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WAVE PROPAGATION IN  POROUS LAYERED MEDIUM 
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Abstract  

  In this paper, the various characteristics of the propagation of surface waves, in 

fluid saturated incompressible porous layered media, are discussed. Model  of a fluid 

saturated porous half-space lying under two layers of different liquids. The first layer 

is taken to be non-homogeneous with non-homogeneity varies with depth and the 

second layer to be homogeneous.  

1.1 INTRODUCTION 

 The study of surface wave propagation in saturated porous media is of practical 

significance in the field of seismic engineering, because most of the geological 

materials can be grouped into a certain family of porous media. In particular, the 

portion of these media as structure foundation is mostly composed of saturated porous 

media as water saturated soil deposit. The Biot(1941) model of porous media has been 

extensively used by many researchers to study the surface wave propagation in fluid 

saturated porous media. Rao and Sharma (1978) studied the Love wave propagation in 

poroelasticity by considering the porous medium with a layer of different porous 

medium over it. Tajuddin and Lingam (1990) discussed the propagation of surface 

wave in a poroelastic solid layer lying over an elastic solid. Sharma, Kumar and 
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Gogna (1991) discussed the surface wave propagation in a liquid saturated porous 

layer lying over a homogeneous transversely isotropic elastic half-space and under a 

uniform layer of liquid.   

  Based on the theory of porous media, which is based on the Fillunger model, de 

Boer and Liu (1994) investigated the problem of plane waves in a semi-infinite fluid 

saturated incompressible porous medium and discussed the dispersion relationship and 

the attenuation. They observed that the propagation of transverse waves in the fluid 

phase is completely due to the interaction between the two phases and pore pressure is 

produced in the process of reflection, even in the case of the incidence of transverse 

wave.Liu and de Boer (1997) discussed the wave propagation characteristics including 

dispersion and attenuation of Rayligh and Love type waves in a fluid saturated porous 

medium where by taking the porous medium to be consist of a microscopically 

incompressible porous solid skeleton saturated by an microscopically incompressible 

liquid.      

  In this paper, the various characteristics of the propagation of surface waves, in 

fluid saturated incompressible porous layered media, are discussed. Model considered 

in problem-I consist of a fluid saturated incompressible porous half-space lying under 

two layers of different liquids. The first layer is taken to be non-homogeneous with 

non-homogeneity varies with depth and the second layer to be homogeneous. The 

Problem -II is devoted to the dispersion and attenuation of Rayleigh-type surface 

waves, in a model consisting of a poroelastic plate of a fluid saturated incompressible 
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porous material lying between an empty porous elastic layer  and an empty porous 

elastic half-space.  

Problem-I 

  Oceanic models involving double liquid layer of inhomogeneous and 

homogeneous liquids lying over the fluid saturated soil and other materials, which are 

porous but incompressible in nature, are often present in the earth model. So in the 

present part of this chapter, we have investigated the surface wave propagation in one 

such model by taking first layer to be non – homogeneous, with non–homogeneity 

varying with depth, and the second layer homogeneous. The half – space is taken as a 

two-phase system with incompressible solid phase and an incompressible fluid phase. 

Frequency equation relating the phase velocity with the wave number and other 

material parameters is derived and the variations of phase velocity with wave number 

for different values of the non-homogeneity parameter and for different values of the 

ratio of the thicknesses of layers are presented graphically and are discussed. 

Depending upon the thicknesses of the layers, some particular cases have also been 

included.  

FORMULATION OF THE PROBLEM AND ITS SOLUTION 

We consider a model consisting of a double layer of two different liquids, resting on a 

half – space of a fluid saturated incompressible porous medium of infinite extent. The 

upper layer 1L is non-homogeneous and is of thickness h, whereas the lower layer 2L  

is homogeneous and its thickness is taken to be H. The coordinate system is selected 
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with xy-plane coinciding with the interface between two layers, x-axis along the 

length and z-axis perpendicular to the interface along the direction of increasing 

depth. So the layers 1L , 2L and the half-space occupy the regions 0h-  z , 

H0  z  and Hz   respectively as shown in Fig.1 
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Geometry of the Investigated Problem 

Fig. 1 

 

We also consider the waves of plane strain with wave front parallel to the y-axis so 

that the field components in the y-direction vanish and are independent of y 

coordinate. So we have  
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where 
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For the layers 1L and 2L , equations governing the motions of liquids are given by 

Ewing, Jardetzky and Press (1957) as 

  
2

2

LL

t
ρλ

iL
i

iL
i






u
u ,                            (1.10) 

 
00iL

ii

00
nm

LL

nm
δλτ u ,                                (1.11) 

where m0, n0 =1, 2, 3 and i = 1, 2   refer to layers  L1 and L2 respectively. In these two 

equations iLu  are the displacement vectors, iL
λ  are the bulk modulii of the liquids, 

iL
ρ  are their densities and i

00

L

nm
τ  are the components of the stresses in the liquids. For 

the present problem, the displacement vectors  ii
iL

LL
 w0, ,u u . So the equations 

(4.10) and (4.11) for the layers L1 and L2 are simplified as: 
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Let the non-homogeneity of the layer L1 be taken as 
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where 1L
0λ and 1L

0ρ  are the bulk modulus and density at the surface z = 0 and  α  is the 

non-homogeneity parameter of the non-homogeneous layer. For further 

considerations, it is convenient to introduce in equations (4.2) – (4.17), the 
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where *ω is a constant having the dimensions of frequency, E is the Young’s modulus 

of elasticity and 1c  is given by (2.17). Using (4.19) in equations (4.2) – (4.9), (4.12) – 

(4.17), with the aid of (4.18) and after suppressing the primes, we get the following 

dimensionless form of the governing equations  
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BOUNDARY CONDITIONS 

              The boundary conditions, in dimensionless form, for the present problem are 

as follows: 

(a) The free surface of the liquid layer 1L ,  which is the vanishing of the normal stress 

component at z = - h, i.e. 

  0τ 1L
zz  .         (1.32)           
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(b) Conditions at the interface between two liquid layers are the continuity of normal 

stress and displacement components. So at the interface z = 0, we have 
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(c)    At the interface z = H, continuity of normal stress components, vanishing of 

shear component of stress and the continuity of normal displacement components, i.e.   
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4.6 NUMERICAL RESULTS AND DISCUSSIONS 

       With a view toward illustrating the analytical procedure presented in the 

preceding sections, we consider an example for numerical discussion and consider a 

model for which the physical constants for half pace are taken as defined in Chapter-2, 

where as for liquid layers following Ewing, Jardetzky and Press (1957), we have 

210LL
0 N/m10  0.214  λ  λ 21  and 33LL

kg./m101.0 ρ  ρ 2

1

0  .  

 The phase velocity c as a function of wave number k and various physical 

parameters in complex form, showing that the waves are attenuated in space. If we 

write  
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so that the wave-number k = R1 + iq, where 
v

ω
R1   , v and q are real numbers. This 

shows that v is the propagation speed, R1 is the real wave-number and q is the 

attenuation coefficient of the waves. 

                  The results depict the variation of phase velocity with respect to wave 

number and their graphical representations . It is evident that for any value of αh, 

starting from a higher value, the phase velocity falls very quickly to some lower value 

then decreases gradually to the velocity of the waves of short wave length. The 

significant fall at the vanishing wave number is due to the damping effect of the 

overlying liquid layers and also the viscous damping caused by internal friction from 

the interaction mechanism between the skeleton and pore liquid present in the pores. 

So, in the beginning when wave number is small the waves are highly dispersive, their 

depressiveness decreases with increase of wave number and ultimately for all values 

of αh, the phase velocity is constant and hence the waves become non-dispersive. 

Curves are drawn for three different values of αh and increase in phase velocity with 

increase in αh indicates that the non-homogeneity of the liquid layer also affects the 

dispersive character of the waves. Variations are shown for two values of the ratio 
h

H
 

and we observe that this ratio affects the phase velocity only quantitatively, but not 

qualitatively. This is again justified when the curves are drawn for three different 

values of 
h

H
 at some fixed values of αh .It is clear that the phase velocity increases 

with the decrease in the values of this ratio. 


